Microelectronics Research Group (MRG)

Giorgos Konstantinidis

Microelectronics Research Group (MRG) Institute of Electronic Structure &Lasers (IESL) Foundation for Research & Technology Hellas (FORTH)

MIMOMEMS 1-TH OCTOBER 2000

INTATA TO

INSTITUTE OF ELECTRONIC STRUCTURE AND LASER

(IESL)

Matter and Light!

MI MOMENS 11TH OCTOBER 2000

IESL/FORTH

LASER AND APPLICATIONS DIVISION

Atomic Physics (Strong field effects, Quantum gases) Molecular Physics, Chemical Dynamics Laser Interactions with Materials and Applications Biomedical Applications

MATERIALS and STRUCTURES

Materials Science (Magnetic, Photonic and Electronic Materials)

Microelectronics (Compound Semiconductors)

Polymer Science (Soft matter Physics)

THEORETICAL AND COMPUTATIONAL PHYSICS AND CHEMISTRY DIVISION

Theoretical Physics and Chemistry Environmental Studies

MI MOMEMS 11TH OCTOBER 2009

INAIA, ROM

MRG at a glance

-Started in 1985 by A. Christou, focused on III-arsenide microwaves -By 1990 a full laboratory with material and fabrication capabilities -A joint effort between IESL & University of Crete

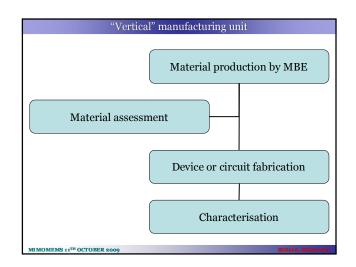
-A joint eligible to the street in ESE & offiversity of clete
-Since 1993 moved towards wide band gap semiconductors (SiC, Ill-nitrides)
2008

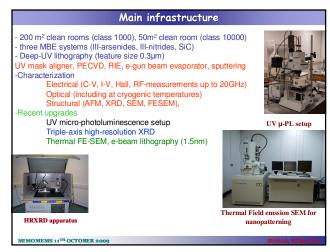
-Group of 40 persons, including graduate students

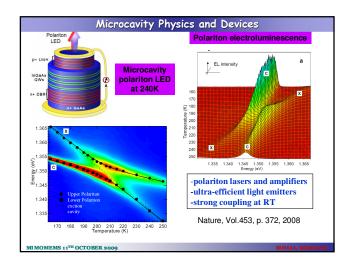
- Molecular beam epitaxy of compound semiconductors (III-nitrides, III-arsenides, SiC)

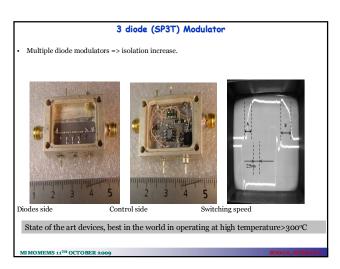
 $thin\ films,\ heterojunctions,\ quantum\ wells,\ quantum\ dots$

- Device processing and characterization:

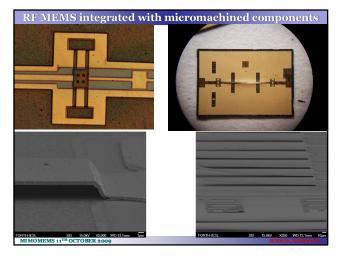

microelectronics (HEMTs, MMICs, RF-MEMS, RTDs, sensors...) optoelectronics (LDs, LEDs, detectors, solar cells,QDs...)

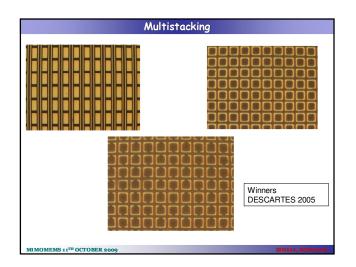

-Targeted areas of applications:

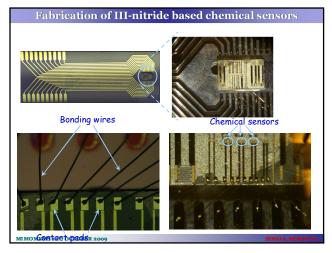

information society and nanotechnology, space, security, biotechnology

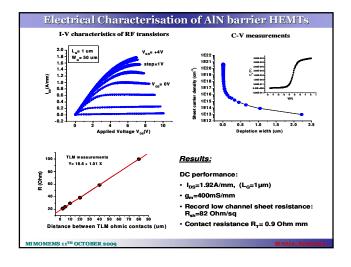

MI MOMEMS 11TH OCTOBER 2009

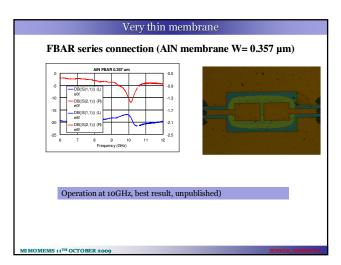
SINAIA, RO













Clarifications

Service	Specifics	Cost
MBE (3inch) material	GaAs MESFET GaAs/AlGaAs HEMT	TBD
Metallization (E-BEAM)	Common metals, Noble metals, Refractory metals Up to 1 micron thickness	TBD
Metallization (sputtering)	Alloys	TBD
Bonding	Wire bonding from device to package	TBD
High resolution SEM	inm resolution	TBD
Interest by Cipho	tonics (UK) for our Au/Sn solder bum	o technology

Know-how	MRG key advantages	Prospect	Target market (size)	Investement type	Investment cost (M€)
AlN barrier HEMT material	Unique technique for the specific material in terms of quality	Short	Base stations Radars Harsh environment operation	МВЕ	1.5
AlN barrier HEMTs	Home grown material available	Medium	Base stations Radars	Stepper Atomic layer oxide deposition system	1.5
III-nitride based ISFETs	Access to a broad range of HEMT material	Medium	Bioanalysis		
III-nitride based acoustic devices	Best performance due to high velocity of the acoustic waves, co-integration with electronics	Medium	Gas sensors Electronic filters (mobile phones) Harsh environment operation	ICP etcher	0.5

Know-how	MRG key advantages	Prospect	Target market (size)	Investement type	Investment cost (M€)
AlGaN/GaN resonant tunelling diodes	The 1st demonstration of iii-nitride RTDs	Medium	Terahertz imaging Security, ultra fast electronics, control electronics for harsh environment	New generation of III-nitride MBE	1.5
Tunable UV- VIS PDs	UV-VIS spectral region RT operation	Long	Hyperspectral imaging Earth imaging, Remote sensing Medical applications	New generation of III-nitride MBE	1.5
InGaN based high efficiency solar cells	Full solar spectrum coverage	Long	Space solar cells Environmetally friendly solar cells	New generation of III-nitride MBE	1.5

Know-how	MRG key advantages	Prospect	Target market (size)	Investement type	Investment cost (M€)
SiC IMPATT & PIN diodes	Unique performance especially at elevated temperatures	Short	Defense Commercial space Base stations for mobiles Low to medium power radars (3M\$ 2010 to 30M\$ 2016)	LPCVD Oxidation furnace	0.5 0.3
	titanium carbi Patent No. 6,5	de and nickel silici 99,644 issued on	de", K. Vassilevski,	Canadian patent	

	MRG key advantages	Prospect	Target market (size)	Investement type	Investment cost (M€)
Polariton based devices	1st demonstration of polariton LEDs at room temperature	Medium	WDMs (billion\$)	In situ monitoring of thickness MBE upgrade ICP RIE	2
Quantum dot based devices	Strong advance on (211)B piezoelectric quantum dots	Long	Single photon emitters for Cryptography (tens of millions\$)	Sophisticated instrumentation for handling & measuring single photons (eg. SensitivedDetectors)	1

Know-how	MRG key advantages	Prospect	Target market (size)	Investement type	Investment cost (M€)
Thin oxide echnology	P type oxides	Medium	UV LEDs emitters UV-detector arrays Solar cells (millions of \$)	Multi-target sputtering system	1
TFTs	Transparent thin film transistors	Medium	Displays Transparent electronic Flexible electronics (billions of \$)	Multi-target sputtering system	1

	MRG key dvantages	Prospect	Target market (size)	Investement type	Investmen cost (M€)
Membrane dem echnology of pa activ mon integ	passive & ive devices nolithically egrated on a	Medium	communication Ambient		.05

Know-how MRG key advantages Prospect Target market (size) Investment type Investment oost (MUltra light 1st Short Space Dedicated metal 0.3
mirrors & other optical evaporator with slow pumping and components on aerogel exubstrates experience evaporator with slow pumping and venting accessories

MRG have technologies to exploited immediately There is a growing "microelectronics" environment in Greece (HSIA, Cluster Coralia, Micro&Nano) but targets (at the moment) very focused areas and is fabless and Si or Si-Ge Difficult to develop products within an academic laboratory There is a need for significant and steady investment in equipment and people Latest example: FBH institute in Berlin has created a spin off company in GaN/AlGaN MMICs (BeMiTec), with a facility 700m2 clean rooms and an annual state funding of 9 M€ from which 2-3 are for new equipment

Final comments